Automa a stati finiti non deterministico
Nella teoria del calcolo, un automa a stati finiti non deterministico (ASFND, in inglese nondeterministic finite automaton, NFA) è una macchina a stati finiti dove per ogni coppia stato-simbolo in input possono esservi più stati di destinazione.

Al contrario degli automi a stati finiti deterministici, gli NFA possono cambiare stato indipendentemente dal simbolo letto, tramite epsilon-transizioni. Gli automi che presentano questo tipo di transizioni sono anche detti ε-NFA.
Definizione formale
modificaUn automa a stati finiti non deterministico è una quintupla con:
- insieme finito di simboli chiamato alfabeto
- insieme finito di stati
- funzione di transizione, dove è l'insieme delle parti di S
- stato iniziale
- insieme di stati finali
Dato un NFA ed una stringa , A accetta la stringa con se esiste una sequenza di stati tale che:
La macchina parte dallo stato iniziale e legge una stringa. Attraverso la relazione di transizione si determina lo stato o gli stati di destinazione in base allo stato corrente ed al simbolo letto. Se dopo aver letto l'ultimo simbolo la macchina si trova in almeno uno degli stati appartenenti ad F, la macchina accetta la stringa, altrimenti la rifiuta. L'insieme di tutte le stringhe accettate dall'automa a stati finiti non deterministico è il linguaggio accettato dall'automa.
Il linguaggio accettato dagli automi a stati finiti non deterministico è un linguaggio regolare.
Equivalenza tra automa non deterministico e deterministico
modificaPer ogni automa a stati finiti non deterministico è possibile costruire un automa a stati finiti deterministico in grado di riconoscere lo stesso linguaggio utilizzando la costruzione dei sottoinsiemi.
Automa a stati finiti non deterministico con epsilon-transizioni
modificaÈ possibile definire una variante degli automi a stati finiti non deterministici che permetta transizioni di stato spontanee, ossia transizioni su stringa vuota . Per tali automi è sufficiente ridefinire la funzione di transizione come:
- .
Funzione di chiusura su
modificaLa funzione di chiusura su si definisce induttivamente.
Base: .
Ipotesi induttiva: .
Passo induttivo: .
Funzione di transizione estesa
modificaLa funzione di transizione estesa va ridefinita in termini di come segue:
Base: .
Ipotesi induttiva: .
Passo induttivo: .
Esempio
modificaIl seguente esempio mostra un automa a stati finiti non deterministico , sull'alfabeto binario, in grado di determinare se la stringa in input contiene un numero pari di zero o di uno.
dove
- La funzione di transizione è definita dalla seguente tabella di transizione:
0 | 1 | ||
---|---|---|---|
È inoltre importante far notare che può essere ricavato dall'unione di due automi a stati finiti deterministici i cui stati sono rispettivamente e . Il linguaggio regolare riconosciuto dall'automa è inoltre esprimibile tramite l'espressione regolare
Bibliografia
modifica- (EN) nondeterministic finite automaton, in Academic Press Dictionary of Science and Technology, Oxford, Elsevier Science & Technology, 1992.
- (EN) automata theory, in Encyclopedia of Computer Science, Hoboken, Wiley, 2003.
- (EN) John E. Hopcroft, Rajeev Motwani; Jeffrey D. Ullman, Finite Automata, in Introduction to Automata Theory, Languages, and Computation, Addison Wesley, 15 luglio 2006, ISBN 978-0-321-46225-1.
- (EN) Martin Davis, Ron Sigal; Elaine J. Weyuker, Finite Automata, in Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science, Morgan Kaufmann, 17 febbraio 1994, ISBN 978-0-12-206382-4.
Voci correlate
modificaAltri progetti
modifica- Wikimedia Commons contiene immagini o altri file su automa a stati finiti non deterministico