Calcoli algebrici

tipi di calcoli

I calcoli algebrici sono determinati tipi di calcoli la cui risoluzione necessita dell'utilizzo di nozioni e teoremi dell'algebra. Essi sono presenti all'interno delle espressioni algebriche e permettono di trovarne le soluzioni. I calcoli algebrici differiscono dai calcoli aritmetici poiché utilizzano strutture algebriche al posto dei numeri, e operazioni algebriche al posto di operazioni aritmetiche.[1]

Calcolare quale numero sia il quadruplo del successivo del numero 5 equivale a svolgere un'espressione aritmetica, che in questo caso può essere riscritta come:

Se invece volessimo calcolare quale numero sia il doppio del successivo di un generico numero dovremmo scrivere un'espressione algebrica: che può essere risolta mediante calcoli algebrici.

Il calcolo algebrico è spesso conosciuto come calcolo letterale, in quanto si applica a tutte quelle espressioni in cui vi compaiano numeri e lettere, oppure soltanto lettere. In matematica le espressioni contenenti una parte letterale oltre a quella numerica vengono dette monomi e polinomi.

  • Si dice monomio l'espressione algebrica contenente solamente l'operazione di moltiplicazione.
  • Alcuni esempi di monomi sono:   oppure   mentre:   o   non sono monomi.
  • Due monomi si dicono simili tra loro quando hanno la stessa parte letterale. Esempio:   e   sono monomi simili in quanto possiedono la stessa parte letterale  .

Polinomi

modifica

Si dice polinomio un’espressione algebrica ottenuta dalla somma tra monomi.

Un esempio di polinomio può essere:  

Operazioni algebriche

modifica

Le operazioni algebriche che è possibile svolgere con monomi e polinomi sono: addizione, sottrazione, moltiplicazione e divisione.

Addizione e sottrazione

modifica
  • Due monomi possono essere sommati o sottratti tra di loro solamente se sono simili.
  • Dalla somma o sottrazione di due monomi simili si ottiene un altro monomio con la stessa parte letterale.

Esempio 1:  

Esempio 2:  

Invece, quando si sommano o sottraggono più monomi che non sono tutti simili tra di loro, non si otterrà un monomio come risultato.

Esempio:   in questo caso occorre sommare tra di loro i monomi con la stessa parte letterale, e il risultato sarà un polinomio.

  A questo punto i due monomi non possono essere più sommati tra loro poiché hanno parti letterali diverse, perciò questo è il risultato dell'espressione algebrica.

Moltiplicazione

modifica

Consideriamo la seguente operazione algebrica:   si tratta di una moltiplicazione tra due monomi.

Per calcolare il risultato è necessario tenere in considerazione alcune proprietà elementari dell'aritmetica: le proprietà commutativa, associativa e la prima proprietà delle potenze.

  • Per la proprietà commutativa, nella moltiplicazione, cambiando l'ordine dei fattori (i due elementi da moltiplicare) il risultato non cambia, quindi:  
  • Per la proprietà associativa  
  • Per la prima proprietà delle potenze se la parte letterale è la stessa si possono sommare gli esponenti.
  • Perciò applicando queste proprietà:  

Invece, il prodotto tra due polinomi è un polinomio che si ottiene moltiplicando ogni termine del primo polinomio per ogni termine del secondo polinomio.

Esempio:  

In questo caso bisogna tener presente la proprietà distributiva, per cui   verrà distribuito tra i termini  .

  

Divisione

modifica

Consideriamo la seguente operazione:   Si tratta di una divisione tra due monomi scritta sotto forma di frazione.

Per risolverla si può eseguire la divisione tra le due parti numeriche e tra le due parti letterali:  

Per arrivare a questo risultato bisogna però ricordare un'altra delle proprietà delle potenze, per cui se in una divisione due monomi aventi parte letterale nella forma  , hanno la stessa base   allora gli esponenti   possono essere sottratti. Nel caso dell'esempio,   per il fatto che gli esponenti 3 e 2 vengono sottratti, perciò   che è l'esponente di  .

La divisione tra polinomi è spiegata alla pagina: Divisione dei polinomi

  1. ^ Fonte 1 (PDF), su crf.uniroma2.it.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica