Fosgene

composto chimico
(Reindirizzamento da Cloruro di carbonile)

Il fosgene (o cloruro di carbonile) è un composto semplice del carbonio (IV) in cui l'atomo C è unito con legame doppio all'ossigeno e con due legami singoli al cloro; la sua formula molecolare è quindi COCl2.[2] Da un punto di vista sistematico è un ossicloruro di carbonio, intermedio come composizione tra CO2 e CCl4 e rappresenta anche il dicloruro dell'acido carbonico.

Fosgene
formula di struttura
formula di struttura
struttura 3D
struttura 3D
Nome IUPAC
Dicloruro di carbonile
Nomi alternativi
cloruro di carbonile
cloroformilcloruro
dicloroformaldeide
ossicloruro di carbonio
Caratteristiche generali
Formula bruta o molecolareCOCl2
Massa molecolare (u)98,92
Aspettogas incolore
Numero CAS75-44-5
Numero EINECS200-870-3
PubChem6371
SMILES
C(=O)(Cl)Cl
Proprietà chimico-fisiche
Densità (g/cm3, in c.s.)1,42 (a 8 °C)
Temperatura di fusione−118 °C (155 K)
Temperatura di ebollizione8 °C (281 K)
Proprietà termochimiche
ΔfH0 (kJ·mol−1)−219,1
ΔfG0 (kJ·mol−1)−204,9
S0m(J·K−1mol−1)283,5
C0p,m(J·K−1mol−1)57,7
Indicazioni di sicurezza
Simboli di rischio chimico
tossicità acuta corrosivo gas compresso
pericolo
Frasi H330 - 314 - 280 - EUH071
Consigli P260 - 280 - 304+340 - 303+361+353 - 305+351+338 - 315 - 405 - 403 [1]

A temperatura ambiente è un gas incolore, non infiammabile, più pesante dell'aria (≈ 3,4 volte), estremamente tossico e aggressivo, dal tipico odore di fieno ammuffito; tecnicamente è un vapore e viene commercializzato in bombole come gas liquefatto.[3]

È una specie elettrofila che reagisce già con un nucleofilo debole come l'acqua, o anche solo con l'umidità dell'aria, formando un addotto che poi si decompone velocemente producendo acido carbonico e acido cloridrico.[4]

È un prodotto di sintesi, ma piccole quantità possono formarsi in natura dalla decomposizione e dalla combustione di composti organici contenenti cloro, ad esempio il cloroformio.[5]

Durante la prima guerra mondiale è stato impiegato come arma chimica.

Etimologia

modifica

Il fosgene è stato sintetizzato per la prima volta dal chimico John Davy (fratello di Humphry Davy) nel 1812, il quale lo battezzò così dall'unione delle parole greche φῶς (phòs, luce)[6] e -γενής (-ghenès, generato da),[7] volendo significare «generato dalla luce», perché lo ottenne esponendo alla luce del sole una miscela di CO e Cl2 (reazione fotochimica).[8] Il termine inglese phosgene è passato in italiano attraverso il francese phosgène come «fosgene»,[9] le cui prime occorrenze sono registrate dal 1834.[10]

Inizialmente fu usato come arma chimica, durante la prima guerra mondiale, dai francesi nel 1915;[11] dapprima i tedeschi iniziarono ad aggiungerne piccole quantità al cloro per aumentarne la tossicità per poi usarlo al 50% con il cloro per ridurre la densità del fosgene alle basse temperature che ne rendeva difficile la propagazione in forma di nube.[12]

Si calcola che nella prima guerra mondiale i morti dovuti all'uso del fosgene siano stati circa 100.000.

Il Regio Esercito ha utilizzato il fosgene in Libia e durante la guerra d'Etiopia sia contro militari sia contro civili.[13]

Struttura molecolare e proprietà

modifica

La molecola COCl2 è qualitativamente molto simile al fluoruro di carbonile COF2, isoelettronico di valenza: è planare, con il carbonio centrale ibridato sp2, ma la simmetria molecolare è soltanto C2v (non D3h come BF3 o lo ione nitrato NO3).[14] Infatti, oltre al fatto che i tre atomi attorno all'atomo centrale non sono uguali, anche gli angoli differiscono dal valore ideale di 120°. Da indagini combinate di diffrazione elettronica e spettroscopia rotazionale nella regione delle microonde si sono potuti trovare i parametri strutturali seguenti:[15][16]

r(C=O) = 117,56 pm; r(C–Cl) = 173,81 pm
∠(ClCCl) = 111,79°; ∠(ClCO) = 124,11°

Nel fosgene il legame C=O è significativamente più corto rispetto a quello nell'acetone (121,5 pm)[17] e nella formaldeide (120,78 pm),[18] e quasi uguale a quello in COF2 (117,17 pm[19]). Anche il legame C–Cl è un po' più corto del normale, cioè 177 pm per C(sp3)-Cl(sp3),[20] ma non tanto, considerando l'ibridazione sp2 del carbonio che tende a far accorciare il legame.

L'angolo ClCCl è molto più stretto rispetto al valore atteso di 120° per l'ibridazione sp2 dell'atomo centrale. La teoria VSEPR[21][22] prevede che un doppio legame occupi più spazio angolare rispetto ad un legame semplice (quindi ∠(ClCCl) < ∠(ClCO)) e lo stesso andamento qualitativo si osserva per il fluoruro di carbonile (COF2),[23] l'acetone[17] e la formaldeide.[18]

Produzione

modifica

Industrialmente il fosgene è prodotto facendo fluire ossido di carbonio e cloro gassosi su un letto di carbone ad alta porosità che agisce da catalizzatore.

La reazione che avviene è

 

La reazione è esotermica, ovvero avviene con sviluppo di calore, quindi il reattore deve essere raffreddato continuamente per allontanare il calore che viene prodotto. In genere la reazione viene condotta a temperature comprese tra 50 °C e 150 °C; sopra 200 °C il fosgene torna a decomporsi in cloro e monossido di carbonio.

Un'altra reazione in cui viene prodotto fosgene è quella in fase gassosa tra tetracloruro di carbonio e vapor d'acqua ad alte temperature:

 

Per via dei problemi di sicurezza legati al suo trasporto e alla sua conservazione, quasi sempre il fosgene è prodotto e utilizzato nello stesso impianto chimico.

La luce, in presenza di ossigeno atmosferico, è in grado di convertire il cloroformio in fosgene, per questa ragione il cloroformio è sempre conservato in boccette ambrate e ben tappato. Talvolta le soluzioni di cloroformio vengono stabilizzate utilizzando dell'etanolo che inibirebbe la formazione di fosgene.

Tossicità

modifica

Il fosgene è un veleno particolarmente insidioso perché non provoca effetti immediati: in genere, i sintomi si manifestano tra le 24 e le 72 ore dopo l'esposizione. Combinandosi con l'acqua contenuta nei tessuti del tratto respiratorio, il fosgene si decompone in anidride carbonica e acido cloridrico; quest'ultimo dissolve le membrane delle cellule esposte, facendo sì che le vie respiratorie si riempiano di liquido; la morte sopraggiunge per combinazione di emorragie interne, shock e insufficienza respiratoria; a differenza di altri gas, il fosgene non viene assorbito attraverso la pelle e il suo effetto si produce solo per inalazione.

Utilizzi

modifica

Il fosgene è principalmente impiegato come materia prima nella produzione di polimeri, tra cui i poliuretani, i policarbonati e le poliuree, oltre che nella produzione del kevlar.

Viene usato anche per produrre isocianati e cloruri acilici, intermedi nelle produzioni di pesticidi, coloranti e molecole di interesse farmaceutico.

Tramite l'uso del fosgene è possibile isolare dai loro minerali alcuni metalli, tra cui alluminio e uranio, ma si tratta di processi poco usati per via della pericolosità della sostanza.

  1. ^ scheda del fosgene su IFA-GESTIS Archiviato il 16 ottobre 2019 in Internet Archive.
  2. ^ F. Albert Cotton, Geoffrey Wilkinson, Carlos A. Murillo e Manfred Bochmann, Advanced Inorganic Chemistry, 6ª ed., Wiley Interscience, 1999, p. 223, ISBN 0-471-19957-5.
  3. ^ (EN) PubChem, Phosgene, su pubchem.ncbi.nlm.nih.gov. URL consultato il 29 novembre 2024.
  4. ^ (EN) Phosgene, su www.chemeurope.com. URL consultato il 29 novembre 2024.
  5. ^ (EN) Wolfgang Schneider e Werner Diller, Phosgene, John Wiley & Sons, Ltd, 2000, DOI:10.1002/14356007.a19_411, ISBN 978-3-527-30673-2. URL consultato il 29 novembre 2024.
  6. ^ (EN) Olivetti Media Communication-Enrico Olivetti, DIZIONARIO GRECO ANTICO - Greco antico - Italiano, su grecoantico.com. URL consultato il 29 novembre 2024.
  7. ^ Geno - Significato ed etimologia - Ricerca, su Treccani. URL consultato il 29 novembre 2024.
  8. ^ (EN) John Davy, On a gaseous compound of carbonic oxide and chlorine, in Philosophical Transactions of the Royal Society of London, vol. 102, 1812, pp. 144–151, DOI:10.1098/rstl.1812.0008, JSTOR 107310.
  9. ^ Fosgène - Significato ed etimologia - Vocabolario, su Treccani. URL consultato il 29 novembre 2024.
  10. ^ Fosgene > significato - Dizionario italiano De Mauro, su Internazionale. URL consultato il 29 novembre 2024.
  11. ^ (EN) Mary Jo Nye, Before big science: the pursuit of modern chemistry and physics, 1800–1940, Harvard University Press, 1999, p. 193, ISBN 0-674-06382-1.
  12. ^ (EN) Edwin Kiester, An Incomplete History of World War I, vol. 1, Murdoch Books, 2007, p. 74, ISBN 978-1-74045-970-9.
  13. ^ A. Del Boca, I gas di Mussolini, Editori Riuniti, Roma, 1996 ISBN 978-88-359-5859-8
  14. ^ CCCBDB list all species by point group, su cccbdb.nist.gov. URL consultato il 23 luglio 2022.
  15. ^ (EN) Munetaka Nakata, Tsutomu Fukuyama e Kozo Kuchitsu, Molecular structure of phosgene as studied by gas electron diffraction and microwave spectroscopy: The rs, rm, and re structures, in Journal of Molecular Spectroscopy, vol. 83, n. 1, 1º settembre 1980, pp. 118–129, DOI:10.1016/0022-2852(80)90315-X. URL consultato il 27 luglio 2022.
  16. ^ (EN) Munetaka Nakata, Kunio Kohata e Tsutomu Fukuyama, Molecular structure of phosgene as studied by gas electron diffraction and microwave spectroscopy: The rz structure and isotope effect, in Journal of Molecular Spectroscopy, vol. 83, n. 1, 1º settembre 1980, pp. 105–117, DOI:10.1016/0022-2852(80)90314-8. URL consultato il 27 luglio 2022.
  17. ^ a b (EN) J. D. Swalen e C. C. Costain, Internal Rotation in Molecules with Two Internal Rotors: Microwave Spectrum of Acetone, in The Journal of Chemical Physics, vol. 31, n. 6, 1959-12, pp. 1562–1574, DOI:10.1063/1.1730653. URL consultato il 23 luglio 2022.
  18. ^ a b (EN) Kojiro Takagi e Takeshi Oka, Millimeter Wave Spectrum of Formaldehyde, in Journal of the Physical Society of Japan, vol. 18, n. 8, 1963-08, pp. 1174–1180, DOI:10.1143/JPSJ.18.1174. URL consultato l'8 giugno 2022.
  19. ^ CCCBDB listing of experimental data page 2, su cccbdb.nist.gov. URL consultato il 23 luglio 2022.
  20. ^ J. E. Huheey, E. A. Keiter e R. L. Keiter, Chimica Inorganica, Principi, Strutture, Reattività, Piccin, 1999, pp. A-25 - A-33, ISBN 88-299-1470-3.
  21. ^ G. L. Miessler e D. A. Tarr, Inorganic Chemistry, 2nd, Prentice-Hall, 1999, pp. 54–62, ISBN 978-0-13-841891-5.
  22. ^ J.E. Huheey, E.A. Keiter e R.L. Keiter, 6 - La struttura e la reattività delle molecole, in Chimica Inorganica, Seconda edizione italiana, sulla quarta edizione inglese, Piccin Nuova Libraria, Padova, 1999, pp. 209-223, ISBN 88-299-1470-3.
  23. ^ (EN) Munetaka Nakata, Kunio Kohata e Tsutomu Fukuyama, Molecular structure of carbonyl fluoride as studied by gas electron diffraction and microwave data, in Journal of Molecular Structure, vol. 68, 1º novembre 1980, pp. 271–280, DOI:10.1016/0022-2860(80)80278-X. URL consultato il 23 luglio 2022.

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica
Controllo di autoritàThesaurus BNCF 33214 · LCCN (ENsh96001291 · GND (DE4174339-8 · BNF (FRcb12546210f (data) · J9U (ENHE987007542042105171