Sistema di coordinate

sistema utilizzato per determinare univocamente la posizione di un punto o di un altro oggetto geometrico
(Reindirizzamento da Coordinate sferiche)

Si definisce sistema di coordinate un sistema di riferimento basato su coordinate, le quali individuano la posizione di un oggetto in qualche spazio. A seconda del numero di coordinate usate, si può parlare di:

  • sistema di riferimento unidimensionale o monodimensionale;
  • sistemi di riferimento bidimensionale;
  • sistemi di riferimento tridimensionale.

Sistema unidimensionale

modifica
 
Sistema di riferimento monodimensionale

Il sistema di riferimento unidimensionale ideato da Cartesio è costituito da una retta, sulla quale un oggetto, di solito un punto, è vincolato a muoversi. Su questa retta si fissa un'origine, che è consuetudine indicare con  , un verso di percorrenza ed un'unità di misura delle lunghezze.

È possibile individuare un punto sulla retta in base ad un numero reale, che individua la distanza dall'origine nell'unità di misura scelta, positiva se concorde con il verso di percorrenza scelto e negativa altrimenti, del punto. Tale numero è detto coordinata, e per indicare genericamente tale coordinata si usa la lettera  . La retta su cui si è fissato origine, verso di percorrenza e unità di misura è detta ascissa.

 
Sistema di riferimento monodimensionale curvilineo

Quando un punto, anziché su una retta, è vincolato a muoversi su una curva è possibile scegliere anche su quest'ultima un'origine, un verso di percorrenza ed un'unità di misura, ma in tal caso si parlerà di ascissa curvilinea. La distanza con segno del punto dall'origine è la coordinata curvilinea del punto.

Sistemi bidimensionali

modifica

Sistema affine

modifica
  Lo stesso argomento in dettaglio: Sistema di riferimento cartesiano.

 

Uno dei sistemi di riferimento bidimensionale è costituito da una coppia di rette incidenti. Tali rette sono indicate, in genere, con   e  , ed il loro punto di intersezione è l'origine per entrambe le rette. Su ciascuna retta si fissa un verso di percorrenza ed un'unità di misura che in genere è uguale per entrambe le rette, ma per esigenze particolari può benissimo essere diversa per ciascuna retta. La posizione di un punto vincolato a muoversi su un piano può essere individuata da una coppia di valori reali, genericamente indicati con le lettere   e  . Si indica con   il numero reale che individua la distanza dall'asse   del punto, misurata parallelamente all'asse   nell'unità di misura scelta per quest'ultimo; con   il numero reale che individua la distanza dall'asse   del punto, misurata parallelamente all'asse   nell'unità di misura scelta per quest'ultimo. La coppia di coordinate che individua il punto si indica scrivendo   oppure  .

 

Quando gli assi   e   sono fra loro ortogonali tale sistema di riferimento si dice ortogonale. Se gli assi sono tra loro ortogonali e l'unità di misura di entrambi è la stessa tale sistema di riferimento si dice ortonormale o cartesiano, in onore del matematico francese Cartesio che lo riprese in età moderna, dopo che era già stato introdotto, nel Medioevo, da Nicola d'Oresme. In tal caso l'asse  , orizzontale, prende il nome di asse delle ascisse, e l'asse  , verticale, prende il nome di asse delle ordinate. Nelle opere di Oresme, erano, rispettivamente, longitudo e latitudo.

Sistema polare

modifica
  Lo stesso argomento in dettaglio: Sistema di coordinate polari.
 

Un sistema di riferimento polare è formato da due coordinate indicate con le lettere   e  . Con   si indica la distanza del punto considerato dall'origine del sistema; in pratica se consideriamo il vettore   che congiunge l'origine degli assi con il nostro punto,   ne indica il modulo. Con  , invece, ci si riferisce all'angolo o anomalia che si forma tra il vettore   considerato prima, e il verso positivo dell'asse   di un normale sistema ortogonale. Dunque,   è il raggio e   un angolo orientato.

Per passare dalle coordinate polari alle cartesiane si usano le seguenti formule:

 
 

e per passare da quelle cartesiane a quelle polari

 
 
 

Si può trovare in molti casi la coordinata   denotata con la lettera  . Questo passaggio di coordinate è molto utile in alcune applicazioni della matematica come nella risoluzione degli integrali multipli su domini costituiti da corone circolari.

Sistemi tridimensionali

modifica

Sistema rettangolare (o cartesiano)

modifica

 

Il sistema di riferimento tridimensionale è costituito da tre rette non parallele, in genere indicate con  ,   e  , passanti per un punto che è l'origine del sistema di riferimento. Per ciascuna di tali rette si sceglie un'unità di misura ed un verso di percorrenza. Le coordinate generiche di un punto nello spazio sono indicate con le lettere  ,   e  . Si indica con   il numero reale che individua la distanza di un punto dal piano individuato dalle rette   e   misurata parallelamente all'asse   nell'unità di misura scelta per quest'ultimo asse. Si definiscono analogamente   e  . Le tre coordinate che individuano un punto nello spazio sono indicate con la simbologia  . Quando i tre assi sono fra loro ortogonali il sistema di riferimento si dice ortogonale o rettangolare.

Ciascuna delle tre rette è un asse cartesiano, e insieme formano la terna cartesiana.

Sistema cilindrico

modifica
 

Il sistema cilindrico è la naturale espansione del sistema polare nelle tre dimensioni. In questo caso le coordinate sono  ,   e  . Considerando un generico punto  , e la sua proiezione   sul piano  , la coordinata   indica la distanza  . Con   si denota la distanza dall'origine del punto  , mentre   individua l'angolo che si forma tra il vettore   e l'asse  .

Per passare dal sistema cilindrico a quello rettangolare:

 

e per passare alle coordinate cilindriche:

 

Molto spesso la coordinata   viene indicata con  .

Sistema sferico

modifica
 

Un altro sistema che si può usare per orientarsi nello spazio è il sistema sferico. È formato da tre coordinate:  ,   e  . Si considera sempre un generico punto   e la sua proiezione sul piano   chiamata  . Con   questa volta si indica la distanza di   dall'origine e   è l'angolo che   forma con il semiasse positivo delle  , chiamato angolo di inclinazione. Indicando invece con   il vettore che collega l'origine con il punto  , si ha che   individua l'angolo che quest'ultimo vettore forma con l'asse  , detto azimut.

Per passare da un sistema sferico ad uno rettangolare si usano le seguenti uguaglianze:

 
 
 

Per passare da coordinate cartesiane a sferiche:

 
 
 

Anche con questo sistema spesso si usa la lettera   al posto della lettera  .

Base coordinata

modifica

A partire dal sistema di coordinate sferiche si può definire una nuova base vettoriale in ogni punto dello spazio mediante i vettori tangenti alle linee coordinate. Sia

 

allora la base naturale dello spazio tangente (isomorfo a  ) è data dai tre vettori:

 

Definendo inoltre

 

la matrice del cambio di coordinate da   a  , si ha che un vettore di  può essere scritto nei due sistemi di coordinate come

 

Poiché   manda un sistema di coordinate ortonormali levogiro in un altro, si ha  

Esprimendo in modo esplicito le relazioni tra i versori di base si ottiene:

 
 
 

e inversamente

 
 
 

In fisica delle particelle in alcuni casi si preferisce usare in luogo dell'angolo polare   la pseudorapidità definita come

 

Voci correlate

modifica

Altri progetti

modifica

Collegamenti esterni

modifica
Controllo di autoritàThesaurus BNCF 12510 · LCCN (ENsh85032235 · GND (DE4165251-4 · BNF (FRcb11979097p (data) · J9U (ENHE987007562866405171