10
(
4
x
2
+
4
y
2
−
1
)
3
−
500
x
2
y
2
+
3
=
0
{\displaystyle 10(4x^{2}+4y^{2}-1)^{3}-500x^{2}y^{2}+3=0}
(
x
3
)
6
+
(
y
2
)
6
=
1
{\displaystyle \left({\frac {x}{3}}\right)^{6}+\left({\frac {y}{2}}\right)^{6}=1}
x
6
+
y
6
−
x
2
=
0
{\displaystyle x^{6}+y^{6}-x^{2}=0}
(
1
−
x
2
)
3
−
y
2
=
0
{\displaystyle (1-x^{2})^{3}-y^{2}=0}
x
6
+
y
6
−
6
y
5
−
y
2
=
0
{\displaystyle x^{6}+y^{6}-6y^{5}-y^{2}=0}
(
x
2
+
y
2
−
1
)
3
−
x
2
y
3
=
0
{\displaystyle (x^{2}+y^{2}-1)^{3}-x^{2}y^{3}=0}
(
x
2
+
y
2
)
3
−
x
2
=
0
{\displaystyle (x^{2}+y^{2})^{3}-x^{2}=0}
(
x
2
+
y
2
)
3
−
x
4
=
0
{\displaystyle (x^{2}+y^{2})^{3}-x^{4}=0}
x
2
(
3
x
2
−
y
2
)
2
−
y
2
(
x
2
+
y
2
)
=
0
{\displaystyle x^{2}(3x^{2}-y^{2})^{2}-y^{2}(x^{2}+y^{2})=0}
(
x
2
+
y
2
)
3
−
(
3
x
2
−
y
2
)
2
=
0
{\displaystyle (x^{2}+y^{2})^{3}-(3x^{2}-y^{2})^{2}=0}
x
6
−
x
5
+
y
2
=
0
{\displaystyle x^{6}-x^{5}+y^{2}=0}
4
(
x
2
+
y
2
−
x
)
3
−
27
(
x
2
+
y
2
)
2
=
0
{\displaystyle 4(x^{2}+y^{2}-x)^{3}-27(x^{2}+y^{2})^{2}=0}
(
x
2
+
y
2
−
1
)
3
+
27
x
2
y
2
=
0
{\displaystyle (x^{2}+y^{2}-1)^{3}+27x^{2}y^{2}=0}
x
4
(
x
2
+
y
2
)
−
(
x
2
−
y
2
)
2
=
0
{\displaystyle x^{4}(x^{2}+y^{2})-(x^{2}-y^{2})^{2}=0}
x
6
−
x
4
+
y
2
=
0
{\displaystyle x^{6}-x^{4}+y^{2}=0}
(
x
2
+
y
2
)
3
−
x
2
(
x
2
+
20
y
2
)
+
8
y
2
(
y
2
+
2
)
=
0
{\displaystyle (x^{2}+y^{2})^{3}-x^{2}(x^{2}+20y^{2})+8y^{2}(y^{2}+2)=0}
Curva a quadrifoglio dritto
(
x
2
+
y
2
)
3
−
(
x
2
−
y
2
)
2
)
=
0
{\displaystyle (x^{2}+y^{2})^{3}-(x^{2}-y^{2})^{2})=0}
Curva a quadrifoglio obliquo
(
x
2
+
y
2
)
3
−
4
x
2
y
2
=
0
{\displaystyle (x^{2}+y^{2})^{3}-4x^{2}y^{2}=0}
x
4
(
x
2
+
y
2
)
−
(
3
x
2
−
2
)
2
=
0
{\displaystyle x^{4}(x^{2}+y^{2})-(3x^{2}-2)^{2}=0}
y
2
−
(
1
−
x
2
)
(
1
−
4
x
2
)
2
=
0
{\displaystyle y^{2}-(1-x^{2})(1-4x^{2})^{2}=0}
(
x
2
+
y
2
)
3
−
y
2
(
5
y
2
+
6
x
2
−
8
)
+
3
x
4
−
4
=
0
{\displaystyle (x^{2}+y^{2})^{3}-y^{2}(5y^{2}+6x^{2}-8)+3x^{4}-4=0}
(
x
2
+
y
2
)
(
2
x
2
+
2
y
2
−
1
)
2
−
x
2
=
0
{\displaystyle (x^{2}+y^{2})(2x^{2}+2y^{2}-1)^{2}-x^{2}=0}
Curva radiale dell'ellisse
(
a
2
x
2
+
b
2
y
2
)
3
−
a
4
b
4
(
x
2
+
y
2
)
2
=
0
{\displaystyle (a^{2}x^{2}+b^{2}y^{2})^{3}-a^{4}b^{4}(x^{2}+y^{2})^{2}=0}
(
x
2
+
y
2
)
(
x
2
+
y
2
+
a
x
)
2
−
b
2
(
x
2
−
y
2
)
2
=
0
{\displaystyle (x^{2}+y^{2})(x^{2}+y^{2}+ax)^{2}-b^{2}(x^{2}-y^{2})^{2}=0}
(
x
2
+
y
2
)
(
x
2
+
y
2
−
x
−
y
)
2
−
a
x
2
y
2
=
0
{\displaystyle (x^{2}+y^{2})(x^{2}+y^{2}-x-y)^{2}-ax^{2}y^{2}=0}
(
x
2
+
y
2
)
(
x
2
+
a
2
−
b
2
)
2
−
4
a
2
x
4
=
0
{\displaystyle (x^{2}+y^{2})(x^{2}+a^{2}-b^{2})^{2}-4a^{2}x^{4}=0}
(
a
2
x
2
+
y
2
−
4
)
3
−
108
y
2
=
0
{\displaystyle (a^{2}x^{2}+y^{2}-4)^{3}-108y^{2}=0}
4
x
2
y
2
(
x
2
+
y
2
)
−
a
2
(
x
2
−
y
2
)
2
=
0
{\displaystyle 4x^{2}y^{2}(x^{2}+y^{2})-a^{2}(x^{2}-y^{2})^{2}=0}
(
x
2
+
y
2
)
(
x
2
+
y
2
−
c
2
)
2
+
4
a
2
y
2
(
x
2
+
y
2
−
b
2
)
=
0
{\displaystyle (x^{2}+y^{2})(x^{2}+y^{2}-c^{2})^{2}+4a^{2}y^{2}(x^{2}+y^{2}-b^{2})=0}
a
4
(
y
2
−
3
x
2
)
+
8
a
3
x
(
x
2
+
y
2
)
−
6
a
2
(
x
2
+
y
2
)
2
+
(
x
2
+
y
2
)
3
=
0
{\displaystyle a^{4}(y^{2}-3x^{2})+8a^{3}x(x^{2}+y^{2})-6a^{2}(x^{2}+y^{2})^{2}+(x^{2}+y^{2})^{3}=0}
x
2
(
2
x
4
−
7
x
2
+
7
)
+
3
y
(
2
y
5
−
2
y
3
−
3
y
−
1
)
−
x
y
(
x
y
2
+
2
x
3
+
7
x
y
+
7
x
)
−
3
=
0
:
{\displaystyle x^{2}(2x^{4}-7x^{2}+7)+3y(2y^{5}-2y^{3}-3y-1)-xy(xy^{2}+2x^{3}+7xy+7x)-3=0:}
x
2
(
2
x
4
−
9
x
2
+
5
)
+
9
y
2
(
y
4
+
3
y
3
+
2
y
2
+
4
y
−
4
)
+
2
x
2
y
(
4
x
2
y
−
5
y
3
−
6
y
2
+
4
y
−
9
)
=
0
{\displaystyle x^{2}(2x^{4}-9x^{2}+5)+9y^{2}(y^{4}+3y^{3}+2y^{2}+4y-4)+2x^{2}y(4x^{2}y-5y^{3}-6y^{2}+4y-9)=0}
x
4
(
29
x
2
−
45
x
−
20
)
+
y
4
(
14
y
2
+
45
y
−
45
)
+
x
y
(
35
x
4
+
12
y
4
−
20
x
3
+
30
y
3
)
+
5
x
2
y
2
(
6
y
2
−
5
x
2
−
8
x
y
−
2
x
−
3
y
)
=
0
{\displaystyle x^{4}(29x^{2}-45x-20)+y^{4}(14y^{2}+45y-45)+xy(35x^{4}+12y^{4}-20x^{3}+30y^{3})+5x^{2}y^{2}(6y^{2}-5x^{2}-8xy-2x-3y)=0}
a
6
x
6
+
b
6
y
6
+
3
a
4
b
2
x
4
y
2
+
3
a
2
b
4
x
2
y
4
+
(
8
a
4
b
4
−
8
a
6
b
2
−
a
8
)
x
4
+
(
8
a
4
b
4
−
8
a
2
b
6
−
b
8
)
y
4
+
(
38
a
4
b
4
−
20
a
6
b
2
−
20
a
2
b
6
)
x
2
y
2
+
(
8
a
6
b
4
−
32
a
4
b
6
+
16
a
2
b
8
+
8
a
8
b
2
)
x
2
+
(
8
a
2
b
8
+
8
a
4
b
6
+
16
a
8
b
2
−
32
a
6
b
4
)
y
2
+
32
a
6
b
6
−
16
a
8
b
4
−
16
a
4
b
8
=
0
{\displaystyle a^{6}x^{6}+b^{6}y^{6}+3a^{4}b^{2}x^{4}y^{2}+3a^{2}b^{4}x^{2}y^{4}+(8a^{4}b^{4}-8a^{6}b^{2}-a^{8})x^{4}+(8a^{4}b^{4}-8a^{2}b^{6}-b^{8})y^{4}+(38a^{4}b^{4}-20a^{6}b^{2}-20a^{2}b^{6})x^{2}y^{2}+(8a^{6}b^{4}-32a^{4}b^{6}+16a^{2}b^{8}+8a^{8}b^{2})x^{2}+(8a^{2}b^{8}+8a^{4}b^{6}+16a^{8}b^{2}-32a^{6}b^{4})y^{2}+32a^{6}b^{6}-16a^{8}b^{4}-16a^{4}b^{8}=0}
[
sin
A
(
x
sin
C
−
y
cos
C
−
d
sin
C
)
(
x
2
+
y
2
+
b
2
−
e
2
)
+
y
sin
B
(
x
2
+
y
2
−
2
d
x
+
d
2
+
a
2
−
f
2
)
]
2
+
[
sin
A
(
x
cos
C
+
y
sin
C
−
d
cos
C
)
(
x
2
+
y
2
+
b
2
−
e
2
)
−
x
sin
B
(
x
2
+
y
2
−
2
d
x
+
d
2
+
a
2
−
f
2
)
]
2
−
4
a
2
sin
2
B
[
sin
C
(
x
2
−
d
x
−
y
)
−
d
y
cos
C
]
2
=
0
{\displaystyle [\sin {A}(x\sin {C}-y\cos {C}-d\sin {C})(x^{2}+y^{2}+b^{2}-e^{2})+y\sin {B}(x^{2}+y^{2}-2dx+d^{2}+a^{2}-f^{2})]^{2}+[\sin {A}(x\cos {C}+y\sin {C}-d\cos {C})(x^{2}+y^{2}+b^{2}-e^{2})-x\sin {B}(x^{2}+y^{2}-2dx+d^{2}+a^{2}-f^{2})]^{2}-4a^{2}\sin ^{2}{B}[\sin {C}(x^{2}-dx-y)-dy\cos {C}]^{2}=0}
ove
A
,
B
,
C
{\displaystyle A,B,C}
sono gli angoli opposti ai lati
a
,
b
,
c
{\displaystyle a,b,c}
di un triangolo
(
5
x
2
+
5
y
2
−
6
)
(
3
x
2
−
y
2
−
1
)
(
9
x
2
−
7
y
2
+
1
)
−
1
=
0
{\displaystyle (5x^{2}+5y^{2}-6)(3x^{2}-y^{2}-1)(9x^{2}-7y^{2}+1)-1=0}
2
(
5
x
2
+
3
y
2
−
6
)
(
2
y
2
−
4
y
2
+
5
)
(
10
x
2
−
3
y
2
−
7
)
+
1
=
0
{\displaystyle 2(5x^{2}+3y^{2}-6)(2y^{2}-4y^{2}+5)(10x^{2}-3y^{2}-7)+1=0}
(
x
2
+
y
2
−
1
)
(
20
x
2
+
y
2
−
2
)
(
x
2
+
20
y
2
−
2
)
+
1
=
0
{\displaystyle (x^{2}+y^{2}-1)(20x^{2}+y^{2}-2)(x^{2}+20y^{2}-2)+1=0}
x
6
+
5
,
8619
y
6
+
4
,
0033
x
5
y
−
10
,
743
x
y
5
−
7
,
549
x
4
y
2
+
6
,
8793
x
2
y
4
−
2
,
7873
x
3
y
3
−
14
,
01
x
5
−
14
,
07
y
5
+
26
,
891
x
4
y
+
19
,
518
x
y
4
+
26
,
291
x
3
y
2
−
47
,
496
x
2
y
3
−
43
,
733
x
4
−
69
,
449
y
4
−
55
,
528
x
3
y
+
54
,
722
x
y
3
+
162
,
51
x
2
y
2
+
69
,
253
x
3
+
303
,
43
y
3
−
217
,
82
x
2
y
−
135
,
8
x
y
2
+
140
,
02
x
2
−
419
,
88
y
2
+
124
,
15
x
y
−
110
,
32
x
+
204
,
46
y
+
0
,
2014
=
0
{\displaystyle x^{6}+5,8619y^{6}+4,0033x^{5}y-10,743xy^{5}-7,549x^{4}y^{2}+6,8793x^{2}y^{4}-2,7873x^{3}y^{3}-14,01x^{5}-14,07y^{5}+26,891x^{4}y+19,518xy^{4}+26,291x^{3}y^{2}-47,496x^{2}y^{3}-43,733x^{4}-69,449y^{4}-55,528x^{3}y+54,722xy^{3}+162,51x^{2}y^{2}+69,253x^{3}+303,43y^{3}-217,82x^{2}y-135,8xy^{2}+140,02x^{2}-419,88y^{2}+124,15xy-110,32x+204,46y+0,2014=0}
Curva a girandola
Superellisse
Curva a farfalla
Curva a bacio
Curva a mongolfiera
Curva a cuore
Curva a dipolo
Curva a doppio uovo
Archi di Samotracia
Cicloide di Ceva
Curva a lacrima
Curva di Cayley
Curva astroide
Curva nodo a farfalla
Curva a manubrio
Curva a Croce di Malta
Curva a quadrifoglio dritto
Curva a quadrifoglio obliquo
Curva atriftaloide
Curva di Lissajous
Curva cornoide
Curva foglio di Dürer
Curva radiale dell'ellisse
Curva a scarabeo dritto
Curva a scarabeo obliquo
Curva a biella-manovella
Curva nefroide
Curva a mulino a vento
Curva di Watt
Curva nefroide di Freeth
Curva a vaso
Curva a telefono
Curva a tomahawk
Curva di Talbot
Curva a tre barre
Curva con 20 flessi
Curva decaconnessa
Curva a 144 bitangenti
Curva ennanodata