Spugna di Menger
In matematica, la spugna di Menger è un particolare frattale tridimensionale, di superficie infinita e volume zero, descritto per la prima volta da Karl Menger nel 1926[1], mentre esplorava il concetto di dimensione topologica. Costituisce l'estensione tridimensionale dell'insieme di Cantor e del tappeto di Sierpinski. La spugna di Menger è una figura replicante potendosi scomporre in 20 figure simili.
Costruzione
modificaLa spugna di Menger può essere costruita nel modo seguente.
- Si parte da un cubo.
- Dividere il cubo in 27 cubi, come nel cubo di Rubik.
- Rimuovere il cubo centrale e i 6 cubi centrali ad ogni faccia: restano così 20 cubi.
- Ripetere, all'infinito, la stessa procedura per ogni nuovo cubo.
La spugna di Menger è la figura che si ottiene come limite di queste operazioni.
Ad ogni iterazione si ottiene un oggetto con più buchi di prima, come mostrato in figura. Ogni volta il volume iniziale è ridotto a del precedente, per cui che all'infinito converge a zero.[2][3]
Costruzione in origami
modificaCon l'origami modulare sono stati realizzati moduli cubici componibili[4] utilizzabili per la realizzazione dei primi livelli della spugna di Menger. Il primo livello necessita dell'assemblaggio di venti cubetti. Le difficoltà crescono poi in modo esponenziale con le potenze di 20 (20,400,8000,160000...). Sembrava improbabile andare oltre il secondo livello ma nel 2005 Jeannine Mosely del Massachusetts Institute of Technology organizza con l'aiuto di 200 volontari un progetto per la costruzione del terzo livello[5] realizzando l'obiettivo.[6]
Nel 2016 la matematica italiana Serena Cicalò, esperta di origami, dopo aver messo a punto una nuova tecnica (chiamata PJS acronimo di pleat and join strips[7][8]) che permette alle connessioni laterali di supportare il peso della struttura, un anno dopo aver realizzato in questo modo il terzo livello, riesce, unica al mondo, nella costruzione del quarto livello che ha poi presentato in varie università.[9][1]
Definizione formale
modificaDa un punto di vista formale, una spugna di Menger può essere definita come segue:[3]
dove M0 è il cubo unitario e
Proprietà
modificaCiascuna delle 6 facce della spugna di Menger è un tappeto di Sierpinski.
La spugna di Menger è un insieme chiuso e limitato, quindi compatto per il teorema di Heine-Borel. Contiene una quantità di punti pari alla cardinalità del continuo; nonostante ciò, ha misura di Lebesgue nulla. L'insieme di Cantor ha anch'esso queste proprietà.
A differenza dell'insieme di Cantor, che ha dimensione topologica zero, la spugna di Menger ha però dimensione topologica 1.
Nella sua costruzione del 1926, Menger mostrò che la spugna è una curva universale: ogni spazio metrico compatto di dimensione 1 è contenuto nella spugna (cioè è omeomorfo ad un suo sottoinsieme).
Come ogni frattale, la spugna ha una dimensione di Hausdorff che può non essere intera: la dimensione della spugna è , approssimativamente 2,726833.[10]
Note
modifica- ^ a b Serena Cicalò, La PJS technique e la costruzione della prima spugna di Menger di livello 4 in origami (PDF), su webmagazine.unitn.it, Università degli Studi di Trento, dipartimento di Matematicatà, 13 marzo 2019.
- ^ Il cubo di Menger (PDF), su La geometria frattale, matematicalexis.altervista.org.
- ^ a b (EN) Matilde Marcolli, Menger Universal Spaces Introduction to Fractal Geometry and Chaos (PDF), su its.caltech.edu, Università di Toronto.
- ^ (EN) Jo Nakashima, Origami Menger sponge, su classcentral.com, YouTube, 2019.
- ^ (EN) Mega Menger: Building a Menger Sponge at MIT, su openlearning.mit.edu, Mit Open Learning.
- ^ (EN) Rick Friedman, Fractal Mathematics With Business Cards, su nytimes.com, The New York Times, 21 giugno 2005, ISSN 0362-4331 .
- ^ piega e collega strisce
- ^ (EN) Serena Cicalò, The Construction of the Origami Level-n Menger Sponge Complement by the PJS Technique, in Crystals, 11, 20210401, 468, 2021.
- ^ Serena Cicalò, La PJS technique e la costruzione della prima spugna di Menger di livello 4 in origami (PDF), su corsi.unica.it, Università degli Studi di Cagliari, dipartimento matematica e informatica.
- ^ Spugna di Menger, su treccani.it.
Voci correlate
modificaAltri progetti
modifica- Wikimedia Commons contiene immagini o altri file su spugna di Menger
Collegamenti esterni
modifica- (EN) Eric W. Weisstein, Spugna di Menger, su MathWorld, Wolfram Research.
- Immagine della Spugna di Menger in origami (JPG), su giladorigami.com.
- Serena Cicalò - Spugna di Menger livello 4 in origami, su RAI, Leonardo, YouTube, RAI, 2 dicembre 2016. URL consultato il 24 ottobre 2023.