Teorema di esistenza di Peano
In matematica, in particolare nell'ambito delle equazioni differenziali ordinarie, il teorema di esistenza di Peano (detto anche teorema di Peano, o teorema di Cauchy-Peano, secondo una denominazione che fa riferimento a Giuseppe Peano e Augustin-Louis Cauchy) è un importante enunciato che garantisce l'esistenza di soluzioni per un dato problema ai valori iniziali.
Il teorema
modificaSia un sottoinsieme aperto di , sia una funzione continua e si consideri un'equazione differenziale ordinaria esplicita del prim'ordine definita su :
Allora ogni problema ai valori iniziali per :
con , possiede una soluzione locale , dove è un intorno di in , tale che:
per tutti gli .
La soluzione può non essere unica, in quanto lo stesso valore iniziale può dare origine a diverse soluzioni .
Altri risultati
modificaUn risultato correlato con il teorema di Peano è il teorema di esistenza e unicità per un problema di Cauchy, che assume che sia una funzione lipschitziana rispetto al secondo argomento e giunge a concludere per l'esistenza e l'unicità di una soluzione (mentre l'enunciato di Peano mostra soltanto l'esistenza). Ad esempio, si consideri l'equazione:
nel dominio . Per il teorema di Peano questa equazione ha soluzioni, ma non si può applicare il teorema di esistenza e unicità per un problema di Cauchy in quanto il membro di destra non è lipschitziano in un intorno dell'origine: la soluzione non è unica.
Una generalizzazione significativa si ottiene con il teorema di esistenza di Carathéodory, che richiede condizioni più deboli per . Tali condizioni sono però soltanto sufficienti.[1]
Note
modifica- ^ Esistono altri risultati, come quello di Okamura, che forniscono condizioni necessarie e sufficienti affinché il problema ai valori iniziali abbia soluzione unica. Si veda Ravi P. Agarwal e V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, 1993, ISBN 978-981-02-1357-2., page 159.
Bibliografia
modifica- Nicola Fusco, Paolo Marcellini, Carlo Sbordone, Lezioni di analisi matematica due, Zanichelli, 2020, ISBN 9788808520203, Paragrafo 50.
- (EN) G. Peano, Sull'integrabilità delle equazioni differenziali del primo ordine, Atti Accad. Sci. Torino, 21 (1886) 437–445.[1]
- (EN) G. Peano, Demonstration de l'intégrabilité des équations différentielles ordinaires, Mathematische Annalen, 37 (1890) 182–228.
- (EN) W. F. Osgood, Beweis der Existenz einer Lösung der Differentialgleichung dy/dx = f(x, y) ohne Hinzunahme der Cauchy-Lipschitzchen Bedingung, Monatsheft Mathematik,9 (1898) 331–345.
- (EN) Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, Providence, American Mathematical Society, 2012, ISBN 978-0-8218-8328-0.
- (EN) Murray, Francis J.; Miller, Kenneth S., Existence Theorems for Ordinary Differential Equations, Krieger, New York, Reprinted 1976, Original Edition published by New York University Press, 1954
Voci correlate
modificaCollegamenti esterni
modifica- (EN) M.I. Voitsekhovskii, Peano theorem, in Encyclopaedia of Mathematics, Springer e European Mathematical Society, 2002.