I mammiferi marini sono specie di mammiferi adattati alla vita acquatica nel corso dell'evoluzione.

Si sono evoluti dai loro antenati terrestri e sviluppando caratteristiche mirate alla vita marina, quali una forma del corpo idrodinamica, appendici modificate in pinne e molte soluzioni per la regolazione della temperatura corporea.

Si tratta di diversi gruppi consistenti in circa 120 specie di mammiferi, di solito divise in cinque gruppi[1]. Ogni gruppo discende da un differente antenato terrestre. Le similarità morfologiche tra questi diversi gruppi sono il risultato della convergenza evolutiva e dell'evoluzione parallela. Per esempio, sebbene le balene e i pinnipedi siano simili nella forma, le prime sono molto più simili ai Cervidae che ai pinnipedi.

Molti altri gruppi di mammiferi marini sono vissuti in passato e si sono estinti nel tempo. Oltre agli antenati delle moderne balene e dei pinnipedi sono esistiti i Desmostylia e i Kolponomos.

Respirazione (immersione)

modifica

I mammiferi marini si immergono per nutrirsi, durata e profondità delle immersioni sono influenzate dalle strategie di alimentazione e di evitamento dei predatori. Il comportamento subacqueo e gli adattamenti fisiologici sono necessariamente collegati e considerati assieme nello studio della fisiologia che rende possibile un certo comportamento. [2]

Capacità aerobica

modifica

Per far fronte alle problematicità dovute alla forte pressione e per poter aumentare il tempo di immersione, i vari animali hanno sviluppato diversi adattamenti.[3]

Nei mammiferi con tempi di immersione maggiori e che raggiungono elevate profondità si sono riscontrate evidenze di una maggior concentrazione di emoglobina e mioglobina. Hanno anche una tolleranza relativamente alta all'anidride carbonica e all'acido lattico, prodotti dal metabolismo anaerobico delle cellule muscolari e che si accumulano nelle stesse durante l'immersione.[4]

Capacità metabolica aerobica (limiti)

modifica

I limiti metabolici delle immersioni dipendono dalla disponibilità di ossigeno e dalla tolleranza all'accumulo di acido lattico nei tessuti. Si innesca una serie di risposte che riducono il consumo di ossigeno, per esempio viene limitato l'arrivo di ossigeno nei distretti metabolici meno attivi, e viene concentrato invece tra polmoni e cervello. [5] Gli adattamenti ai polmoni consentono un'estrazione più efficiente dell'ossigeno, grazie all'elevato numero di globuli rossi nel sangue e alte concentrazioni di mioglobina nei muscoli immagazzinando più ossigeno disponibile poi durante un'immersione.[6]

La caratteristica del tutto singolare della mioglobina è la presenza della carica elettrica positiva sulla superficie. Questa peculiarità di fatto impedirebbe di far attaccare le molecole le une alle altre durante lo schiacciamento derivato dalla pressione del mare. Gli scienziati hanno quindi potuto affermare che l’elevata presenza di mioglobina e la presenza della carica elettrica, consentirebbero di far trasportare più efficacemente l’ossigeno nelle strutture muscolari e nel cervello durante le immersioni profonde. [7]

Esempi di adattamento
modifica

Alcuni mammiferi marini, come la balena dal becco di Cuvier, superano spesso il loro limite di immersione aerobica, dovendo poi avere un tempo di recupero più lungo. Altri invece, come le foche elefanti, rimangono quasi sempre entro i loro limiti aerobici richiedendo pochissimo tempo di recupero tra due immersioni successive.[8]

Alcuni studi sulle foche di Weddel evidenziano invece come il consumo medio di ossigeno sia inferiore durante l'immersione rispetto a quando l'animale si trovi a riposo. Tale paradosso è stato spiegato dal fatto che avendo polmoni all'interno di una gabbia toracica flessibile essi tendono a comprimersi all'aumentare della pressione noto come collasso polmonare e quindi riducendo progressivamente la resistenza al galleggiamento le foche impiegano sempre meno forza muscolare per raggiungere il fondale.

Altri meccanismi di riduzione metabolica sono stati proposti sull'elefante marino. Nello specifico si è ipotizzato che l'animale compia le immersioni più prolungate mentre sta dormendo e inoltre, durante il suo periodo sott'acqua, lasci raffreddare i suoi tessuti (ipotermia).[9][10]

  1. ^ Hoelzel, A. R. (Ed.) 2002. Marine mammal biology: an evolutionary approach. Oxford: Blackwell Publishing. ISBN 0632 05232 5
  2. ^ Paul J. Ponganis, Diving physiology of marine mammals and seabirds, 2015, ISBN 978-1-139-04549-0, OCLC 934451072. URL consultato l'8 maggio 2022.
  3. ^ Encyclopedia of life sciences., Wiley, 2005, ISBN 978-0-470-01590-2, OCLC 527355625. URL consultato il 14 maggio 2022.
  4. ^ Daniel Costa, Diving Physiology of Marine Vertebrates.
  5. ^ Alessandro,. Poli, Fisiologia animale, 2ª ed, EdiSES, 2018, ISBN 978-88-7959-902-3, OCLC 1044778340. URL consultato l'11 maggio 2022.
  6. ^ [seagrant.uaf.edu Adattamenti dei mammiferi marini].
  7. ^ (EN) Scott Mirceta, Anthony V. Signore e Jennifer M. Burns, Evolution of Mammalian Diving Capacity Traced by Myoglobin Net Surface Charge, in Science, vol. 340, n. 6138, 14 giugno 2013, pp. 1234192, DOI:10.1126/science.1234192. URL consultato il 14 maggio 2022.
  8. ^ Peter L. Tyack, Mark Johnson e Natacha Aguilar Soto, Extreme diving of beaked whales, in The Journal of Experimental Biology, vol. 209, Pt 21, 2006-11, pp. 4238–4253, DOI:10.1242/jeb.02505. URL consultato l'8 maggio 2022.
  9. ^ Alessandro,. Poli, Fisiologia animale, 2ª ed, EdiSES, 2018, ISBN 978-88-7959-902-3, OCLC 1044778340. URL consultato il 14 maggio 2022.
  10. ^ Gordon Wyse, Margaret, <1941-> Anderson e Stefania Fadda, Fisiologia animale, Zanichelli, 2006, ISBN 88-08-07025-5, OCLC 848815091. URL consultato il 14 maggio 2022.

Collegamenti esterni

modifica

Pubblicazione Elsevier Aerobic Dive Limit

Altri progetti

modifica