Rombicosidodecaedro metabigirato

In geometria solida, il rombicosidodecaedro metabigirato è un poliedro con 62 facce che può essere costruito, come intuibile dal suo nome, ruotando di 36° due delle cupole pentagonali non opposte e nemmeno adiacenti che possono essere individuate sulla superficie di un rombicosidodecaedro.

Rombicosidodecaedro metabigirato
TipoSolido di Johnson
J73 - J74 - J75
Forma facce4×2+3×4 Triangoli
2+2×2+6×4 Quadrati
4×2+4 Pentagoni
Nº facce62
Nº spigoli120
Nº vertici60
Caratteristica di Eulero2
Incidenza dei vertici5.4(3.42.5)
4×2+8×4(3.4.5.4)
Gruppo di simmetriaC2v
ProprietàConvessità
Sviluppo piano

Caratteristiche

modifica

Il rombicosidodecaedro metabigirato è uno dei 92 solidi di Johnson, in particolare quello indicato come J74, ossia un poliedro strettamente convesso avente come facce dei poligoni regolari ma comunque non appartenente alla famiglia dei poliedri uniformi,[1] ed è il decimo di una serie di diciannove solidi archimedei modificati tutti facenti parte dei solidi di Johnson.

Per quanto riguarda i 60 vertici di questo poliedro, su ognuno di essi incidono una faccia pentagonale, due quadrate e una triangolare.

Formule

modifica

Considerando un rombicosidodecaedro metabigirato avente come facce dei poligoni regolari aventi lato di lunghezza  , le formule per il calcolo del volume   e della superficie   risultano essere:

 
 

Poliedri correlati

modifica

Ruotando di 36° anche un'altra delle cupole pentagonali individuabili sulla superficie del rombicosidodecaedro metabigirato, purché non adiacente a nessuna di quelle già ruotate, si ottiene il rombicosidodecaedro trigirato, anch'esso facente parte dei solidi di Johnson.

  1. ^ Norman W. Johnson, Convex Polyhedra with Regular Faces, in Canadian Journal of Mathematics, vol. 18, Canadian Mathematical Society, 1966, pp. 169-200, DOI:10.4153/CJM-1966-021-8. URL consultato il 14 luglio 2021.

Collegamenti esterni

modifica
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica